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Abstract

In this paper, we study intergenerational stochastic games that can be viewed as a special class of
overlapping generations models under uncertainty. Making use of the theorem of Dvoretzky, Wald and
Wolfowitz [27] from the statistical decision theory, we obtain new results on stationary Markov perfect
equilibria for the aforementioned games, with a general state space, satisfying rather mild continuity and
compactness conditions. A novel feature of our approach is the fact that we consider risk averse generations
in the sense that they aggregate partial utilities using an exponential function. As a byproduct, we also pro-
vide a new existence theorem for intergenerational stochastic game within the standard framework where
the aggregator is linear. Our assumptions imposed on the transition probability and utility functions allow
to embrace a pretty large class of intergenerational stochastic games analysed recently in macroeconomics.
Finally, we formulate a set of assumptions under which the stochastic process induced by the stationary
Markov perfect equilibrium possesses an invariant distribution.
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1. Introduction

Intertemporal decision making that utilises standard optimisation criteria such as the total or
discounted expected return over the time horizon may be quite insufficient to characterise the
problem from the point of view of the decision maker. This is because these measures do not
reflect the variability-risk features of the model. In order to circumvent the difficulty Howard and
Matheson [47] studied a Markovian controlled model, in which the decision maker is equipped
with a constant absolute risk coefficient. This assumption, in turn, implies that such a decision
maker grades his/her utility via the expectations of the exponential function of future random
outcomes. Moreover, the Taylor expansion of the exponential function allows to observe that
such a decision maker does not only take into account the expectation of random returns received
in the future, but also he/she values (with different weights) all their higher moments. This fact
resulted in a rapid development of risk sensitive control theory in diverse research areas. In
particular, the stimulating ideas have found a number of applications in macroeconomic models,
see Tallarini [72], Hansen and Sargent [39], Anderson et al. [5] and references cited therein.
The reader interested in further virtues and properties of this criterion is referred, e.g., to the
comprehensive monograph of Whittle [75] and Föllmer and Schied [30].

A key feature of the aforementioned works is that they admit a (normative) representative
decision maker. In many real life situations, however, the assumption of a representative decision
maker is not acceptable. For example, the arrival of new decision makers in the economy is not
only realistic but also yields a range of fresh economic interactions. These interactions are neatly
captured in various overlapping generations (OLG) models. OLG models are most often used in
macroeconomics, but they can also be useful in microeconomics (see, for example, Ljungquist
and Sargent [54], Bewley [12], Acemoglu [1] or Geanakoplos [33], for general accounts). The
baseline OLG model and its various deterministic variants gave rise to the extensive study of
OLG models within a stochastic framework, see Peled [67], Duffie et al. [24] and references cited
therein are good examples of works that deal with this issue. Specifically, Duffie et al. [24], mak-
ing use of certain ideas from the theory of Markov processes on Borel state space and stochastic
games, proved a general theorem on the existence of stationary Markov equilibrium that induces
an ergodic process in an OLG model. Similar results on the existence of Markov perfect equilib-
rium for different OLG models were given in Gottardi [35] and Harris and Laibson [40], Krusell
and Smith [51]. It is worthy to observe that although the latter two works are formulated in terms
of “hyperbolic consumers” rather than generations, their results can be easily expressed for a cer-
tain type of an OLG model. A common feature of all aforementioned papers on stochastic OLG
models is that they use additive aggregation of partial utilities concerning actions of following
generations.

A major contribution of this paper is an application of principle ideas from risk sensitive
control theory to certain classes of OLG models. To the best of our knowledge, such a merging
of the two theories has not been encountered so far in the literature.

In this paper, we are concerned with a stochastic intergenerational bequest game inspired
by the seminal work of Phelps and Pollak [68]. In their model, it is assumed that each genera-
tion lives, saves and consumes over just one period. Moreover, each generation cares about the
consumption of the following generations, in the sense that it wants to leave a bequest to the suc-
cessors. Therefore, such a generation derives utility from its own consumption and those of its
descendants. The next generation’s inheritance or capital is described by a production function
that is linear with respect to the invested capital. The various versions of this model were studied
by numerous authors. For instance, Leininger [52] and Bernheim and Ray [14] independently
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proved the existence of a Markov perfect equilibrium for a bequest game with a continuous and
increasing production function. Moreover, they assumed that each generation cares only about
its own consumption and that of its immediate successor. The reader interested in the existence
of Markov perfect equilibria for other specific game examples is referred to Chapter 13 in Fuden-
berg and Tirole [31], Haurie [42,43], Karp [50] and to Hori [45] that extends the bequest game
to an OLG model.

Some stochastic variants of the bequest game are examined in Alj and Haurie [2], Amir [3] and
Nowak [62] under specific assumptions imposed on the production function. Their results were
recently extended by Balbus and Nowak [6], Nowak [64] and Balbus et al. [8,9] to other more
general classes of games, but with standard additive utility aggregator. As mentioned, a Markov
perfect equilibrium obtained in Harris and Laibson [40] can also be included as a significant
result to the intergenerational stochastic game theory, because the existence theorem, for both the
hyperbolic consumer model and the intergenerational game, has exactly the same mathematical
meaning.

In this paper, as stated earlier, we study an intergenerational stochastic game, in which each
generation can be employ the exponential aggregator function. Our model deals with a Borel
state space and compact metric action spaces. We enforce some mild continuity conditions on
the instantaneous utility and transition functions. Despite the imposed assumptions, proving ex-
istence of a stationary Markov perfect equilibrium is much more demanding than in the standard
additive utility case (i.e., with the linear aggregator function). This is because the best response
correspondence involved in the proof of existence need not be convex-valued. Therefore, one
cannot apply a fixed point argument. This situation occurs even in simple cases, i.e., if the state
and action spaces are intervals of the set of real numbers and the instantaneous utility and pro-
duction functions are strictly concave. To circumvent this predicament in a unified setup, we
assume that the transition probability function is a convex combination of finitely many atomless
measures on the state space with coefficients that may depend on the state and action variables.
Such a form of the transition probability has been already utilised in the theory of Markov games
by Amir [4], Curtat [22], Nowak [61,63], Horst [46]. Our proof of existence of stationary Markov
perfect equilibria consists of two steps. Firstly, we show that there exists a possibly randomised
stationary Markov perfect equilibrium. Secondly, making use of the specific structure of the tran-
sition probability and applying the theorem of Dvoretzky, Wald and Wolfowitz [27] we obtain a
desired pure stationary Markov perfect equilibrium. The former result in contrast to the latter one
is only of some technical flavour. Moreover, as a byproduct, we provide a new existence theorem
for intergenerational stochastic game with additive expected utility. It is worth emphasising that
a pure stationary Markov equilibrium can be obtained without the assumption of atomless mea-
sures. But it is only possible at some extra cost. Namely, the state and action spaces have to be
intervals of the set of real numbers, the instantaneous utility and production functions ought to be
concave, and the measures involved in the transition probability must satisfy a certain stochastic
dominance condition. These requirements, however, are sufficient to the study of the additive
utility case only. If, on the other hand, one wishes to deal with the exponential aggregator, addi-
tional assumptions are expected. These specific assumptions together with results are contained
in Section 6. They stress out the fact that the application of the theorem of Dvoretzky, Wald and
Wolfowitz [27] is a successful approach in the analysis of stationary Markov equilibria as long as
we are concerned with atomless transitions. This observation applies to both cases: with the lin-
ear and exponential way of aggregation. Finally, we would like to emphasise that the purification
method based upon the theorem of Dvoretzky, Wald and Wolfowitz [27] has not been exploited
in the investigation of Markov perfect equilibria in OLG models.
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This paper is organised as follows. In Section 2, we discuss certain relationships of our meth-
ods with the ideas used in the theory of standard Markov games. Section 3 contains essential
definitions and facts such as a version of the theorem of Dvoretzky, Wald and Wolfowitz [27].
Subsection 3.1 is devoted to basic notions concerning risk sensitive optimisation and the utility
description for risk sensitive generations. Subsection 3.2 presents some examples on station-
ary Markov perfect equilibria in simple bequest stochastic games. A careful analysis of these
examples can considerably help in understanding the difference between the exponential and
linear manner of aggregation. Section 4 contains a description of our general model and main
results, whose proofs are included in Appendix A. Furthermore, likewise in Duffie et al. [24],
we give conditions under which a stationary Markov perfect equilibrium induces a stationary
distribution of the underlying process. This analysis is incorporated in Section 5. Specific results
on the existence of stationary Markov perfect equilibria for games, in which transition prob-
abilities may have atoms are given in Section 6. Finally, Section 7 contains many concluding
remarks.

2. A comparison of literature on equilibria for standard Markov games

By a standard Markov game we mean a discounted stochastic game with simultaneous moves
played on a Borel state space by finitely many players. Such games were extensively examined
during the last four decades and received a lot of special attention from both mathematicians and
economists. Therefore, a natural question arises as to whether the results and methods utilised
in the theory of standard Markov games can be applied to the stochastic bequest games under
consideration in this paper. Although, the answer is negative, there is a strong link between
the tools and techniques used in the two frameworks. Let us first mention that pretty gen-
eral results on existence of subgame perfect Nash equilibria in standard Markov games were
proved by Mertens and Parthasarathy [57], Solan [70] and Maitra and Sudderth [55]. How-
ever, this sort of equilibria were slightly criticised by Maskin and Tirole [56]. They provide a
whole set of motivations for studying stationary Markov perfect equilibria rather than subgame
perfect ones. Such a discussion is especially helpful and desirable in the context of the study
of intergenerational stochastic games. The existence of stationary Markov equilibria in stan-
dard Markov games has been examined by a number of authors. Nonetheless, the existence of
pure equilibria requires other additional conditions imposed on the instantaneous utility func-
tion and the transition probability such as concavity or supermodularity. Moreover, the state
and action spaces should be intervals of a Euclidean space. Although, some of the requirements
are justified in certain group of models and even possess an economic interpretation, they are
usually pretty specific. The problem beyond rests upon finding a fixed point in an appropri-
ate function space, for example, in the class of monotonic Lipschitz functions with bounded
modulus. Therefore, for instance, Amir [4] and Curtat [22] utilise the theory of supermodular
functions, developed in Topkis [73], and Horst [46], in his analysis, applies Lipschitz selec-
tions of best reply functions. Other function spaces were exploited in the papers of Dutta and
Sundaram [26] and Nowak [63], where the players are allowed to use discontinuous strate-
gies. In Section 6, we allow the transitions to have atoms. Our assumptions here are akin to
the conditions accepted in Curtat [22] or Nowak [63]. Such conditions have been already used
in Amir [3], Nowak [62], Balbus and Nowak [6], Balbus et al. [7–9] in the study of intergen-
erational stochastic games within the expected additive utility framework. Since in this paper
we study more involved structure of the game (with the exponential aggregator function), we
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encounter further technical difficulties, and consequently, the above methods cannot be directly
applied in our setup.

Duffie et al. [24] and Nowak and Raghavan [65] studied Markov games on general state
space under much weaker assumptions than the ones exploited in the aforementioned papers.
A common feature of these two works is that the transition probability has a density function.
Then, making use of a certain coordination mechanism, it is shown the existence of a stationary
Markov perfect equilibrium. More precisely, the players can coordinate their mixed actions us-
ing “public signals”, and the obtained stationary Markov equilibrium is an equilibrium found
in the class of correlated strategies of the players. A related theorem for games with weakly
continuous transition probabilities was proved by Harris et al. [41]. Recently, Duggan [25] ex-
tended the results of Nowak and Raghavan [65] in the sense that he allowed the instantaneous
utility functions to depend on the noisy parameter. His concept, however, has no application
to intergenerational stochastic games, because generations choose actions in different periods
of time.

A class of standard Markov games that possesses a mixed stationary Markov perfect equi-
librium was pointed out by Nowak [61]. His result does not require any concavity and super-
modularity conditions. He instead assumes that the transition probability function is a convex
combination of finitely many probability measures on the state space with coefficients that may
depend on the state and action variables. In addition, these coefficients and utility functions have
to be continuous on the product of players’ action sets. This class also embraces the game model,
considered by Parthasarathy and Sinha [66], with state independent transition probabilities. The
key idea of the proof in Nowak [61] rests upon the Lyapunov theorem on the range of atom-
less vector measures. More precisely, by Lyapunov’s theorem one can select appropriate extreme
points in the space of convex combinations of Nash equilibrium payoffs of the players in some
auxiliary one shot game. Then, a measurable implicit function theorems are allowed to obtain
Nash equilibrium strategies. The assumptions made in Nowak [61] are stronger than in Nowak
and Raghavan [65]. However, as Levy [53] showed recently, stationary Markov perfect equilibria
may not exist in discounted dynamic games with deterministic transitions.

In this paper we make a similar assumption on the transition probability (stochastic produc-
tion function) to that of Nowak [61]. The advantage of such a framework is the fact that we deal
with a Borel state space and do not require further limitations imposed on the model except for
standard continuity conditions with respect to the players’ actions. In order to get a stationary
Markov perfect equilibrium in the bequest game under consideration we allow the players to
randomise their actions. First, as a technical result, we show the existence of a randomised equi-
librium, and then we apply a purification technique, exploited extensively in statistical decision
theory by Dvoretzky, Wald and Wolfowitz [27]. This method of purification also relies on Lya-
punov’s theorem on the range of atomless vector measures,1 but it completely differs from the
approach taken in Nowak [61]. Namely, in our paper we are not concerned with the payoff reali-
sations, but we directly replace mixed strategies by suitable chosen pure ones. In this manner, we
avoid numerous technical assumptions usually made in the theory of intergenerational games.
Moreover, the application of the theorem of Dvoretzky, Wald and Wolfowitz [27] is crucial in the
study of game models with the exponential aggregator function, because the best response map-
pings may not be convex valued, even in the cases with one dimensional state space. We refer the

1 See Dvoretzky, Wald and Wolfowitz [27], Feinberg and Piunovskiy [28] or Feinberg and Piunovskiy [29].
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reader to further detailed comments that are provided following a model description and result
formulations.

3. Preliminaries

3.1. Risk-sensitive optimisation

Expected utility theory introduced by von Neumann and Morgenstern, and then criticised
and challenged over sixty years remains the benchmark economic approach. Von Neumann and
Morgenstern showed that if a person accepts certain set of assumptions concerning “rational
choice”, then he/she should compare alternatives by use of the expected utility calculations. The
utility function chosen by an individual should reflect to some extent his/her risk tolerance. For
example, a reasonable utility, say U , ought to be increasing (more wealth is better than less)
and concave (the marginal utility of wealth is decreasing). If U is concave everywhere, then
the individual who employs it, is called risk averse. This interpretation follows from the von
Neumann and Morgenstern representation of the underlying preference relation. More precisely,
let X be a random variable defined on a space Ω endowed with some σ -algebra. X can be
regarded as a random payoff in some optimisation model. The symbol E represents expectation
with respect to a fixed probability distribution P on Ω . Then, Jensen’s inequality yields that

EU(X)� U(EX) if E|X| < +∞.

This means that the sure investment with the same expectation is always preferred by a risk
averse decision maker. If the individual grades his/her random payoffs with the aid of the linear
function, then he/she is said to be risk neutral, since no account for risk is made.

Let Ur be defined as follows

Ur(x) =
{−erx, for r < 0

x, for r = 0.
(1)

At this point we would like to remark some attractive properties of Ur . First, the function Ur be-
longs to the so-called CARA (Constant Absolute Risk Aversion) utilities, which means that Ur

has a constant constant risk sensitivity coefficient in the sense of Arrow–Pratt measure (index),
see Föllmer and Schied [30], Pratt [69]. Let us recall that the Arrow–Pratt index for a twice differ-
entiable utility function U is defined as −U ′′(x)/U ′(x). Clearly, it equals −r for Ur . Second, Ur

is strictly increasing and continuous. Moreover, Ur is strictly concave if r < 0.2 Third, due to the
intermediate value theorem there exists a real number E(r,X) such that Ur(E(r,X)) = EUr(X).
The value E(r,X) is called certainty equivalent and from (1) it follows that

E(r,X) =
{

1
r

ln(EerX), for r < 0
EX, for r = 0.

Hence, the individual with risk sensitivity coefficient −r > 0 is indifferent between receiving a
random payoff X and obtaining the amount E(r,X) for sure. Let us assume now that X does not
equal to some constant almost everywhere. Observe that the Taylor expansion around r = 0 for
Ur yields that

2 Note that we do not consider the function Ur with positive values of r , since then the function Ur is convex. Such a
utility reflects a risk seeking attitude to risk of the individual that is seldom met in real-life problems.
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Ur(X) = 1 +
∞∑
i=1

rk

k! EXk.

For the certainty equivalent, we have

E(r,X) = 1

r
ln

(
1 +

∞∑
i=1

rk

k! EXk

)
≈ EX + r

2
Var X,

if r is sufficiently close to zero. Therefore, if r < 0, then the individual who considers E(r,X)

thinks not only of the expected value EX of the random payoff X, but also of its variance. This
certainty equivalent of X is sometimes called the entropic risk measure of X, see e.g., Föllmer
and Schied [30], and was already used in stochastic control theory forty years ago by Howard and
Matheson [47]. For further results in this area the reader is referred, among others, to Cavazos-
Cadena and Fernández-Gaucherand [21], Jaśkiewicz [48] and references therein. Nowadays this
optimisation criterion has found a number of applications in stochastic optimisation (Whittle
[75]), in finance and portfolio management (Bielecki and Pliska [16], Föllmer and Schied [30]),
in dynamic games (Bas̨ar [13], Monahan and Sobel [58], Caravani and Papavassilopoulos [20])
and macroeconomics (Hansen and Sargent [38,39], Tallarini [72]).

Furthermore, denote by Λ a set of actions of the decision maker (player) and let P = Pλ

depend on λ ∈ Λ. The aforementioned discussion implies that

Eλ(r,X) := 1

r
ln

∫
Ω

erX(ω)Pλ(dω) = 1

r
lnEλe

rX

is a reasonable utility for a risk averse player. We would like to point out that maximisation of
Eλ(r,X) with respect to λ is equivalent to maximisation of

∫
Ω

(−erX(ω))Pλ(dω). In the sequel,
we shall often use this observation.

For better understanding this optimisation criterion, let us consider the following simple exam-
ple. Assume that a person can choose either action a0 that results in obtaining 0 for sure, or action
aλ that gives a random payoff X with the distribution Pλ(X = 1) = λ and Pλ(X = −1) = 1 − λ,
where λ ∈ (0,1). If the decision maker is risk neutral (equipped with a linear utility function),
then he/she accepts the lottery if λ � 1/2. If, on the other hand, the individual is risk averse and
grades his/her random payoffs according to the function Ur (r < 0), then he/she is willing to
accept the lottery than a sure amount if 0 � 1

r
lnEλe

rX , which implies that λ� λr := 1/(er + 1).
If λ = λr , then the decision maker is indifferent between taking part in the lottery and obtaining
nothing. Moreover, observe that

lim
r→0− λr = 1

2
and lim

r→−∞λr = 1.

We may also take a look at λr in terms of the expected value of the random payoff. Clearly,
EλX = 2λ − 1 and λ � λr implies that EλX � 1−er

1+er . In particular, this means that for r = −1
the individual decides to take part in the lottery, if its expected value equals at least 0.462117.
The variance of X with respect to Pλr equals Varλr X = 4(λr − λ2

r ) = 4er

(1+er )2 and it is easy to

notice that Varλr X → 0 if r → −∞, i.e., λr → 1−. It is obvious that a lottery with λ ≈ 1 may
not exist in real-life models, but the decision maker can choose his/her risk sensitivity coefficient
that uniquely describes his/her the threshold λr at which he/she starts to appreciate the lottery
than the sure amount.
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In the game model described later and studied in this paper we consider the composition of
Ur with some concave functions called partial utilities of generations. At this point we wish to
emphasise that this approach enables us to generate various classes of von Neumann and Mor-
genstern utilities. More precisely, assume that the decision maker employs his/her partial utility
function w, which is twice differentiable function, and w′ > 0, and w′′ < 0. Then, he/she deals
with the function Ur ◦ w. Note that Ur ◦ w is concave, and therefore we are still considering the
von Neumann and Morgenstern utility. Furthermore, we observe that the Arrow–Pratt measure
of absolute risk aversion for Ur ◦ w need not be constant and equals

R(x) := − (Ur ◦ w)′′(x)

(Ur ◦ w)′(x)
= −rw′(x) − w′′(x)

w′(x)
,

where the second term is the risk sensitivity coefficient of w. Clearly, if the function x 	→ −w′′(x)
w′(x)

is decreasing or constant, then R is either decreasing or constant, which means that Ur ◦ w

is either DARA (Decreasing Absolute Risk Aversion) or CARA utility. It is easily to see that
the Arrow–Pratt index for Ur ◦ w equals 0 if and only if r = 0 and w is an affine function.
Assume that r < 0 and let us take a look at typical examples of w (see, for instance, Föllmer and
Schied [30]).

• If w(x) = ax, with a > 0, then R(x) = −ra and Ur ◦ w is again CARA utility.
• If w(x) = lnx on (0,∞), then R(x) = 1

x
(1 − r) and Ur ◦w is HARA (Hyperbolic Absolute

Risk Aversion) and DARA (Decreasing Absolute Risk Aversion) utility.

• If w(x) = x1−ρ−1
1−ρ

on (0,∞) with ρ 
= 1 and ρ > 0, then R(x) = −rx−ρ + ρ 1
x

and Ur ◦ w

is DARA utility.
• If w(x) = −eαx , with α < 0, then R(x) = −α + rαeαx and Ur ◦ w is DARA utility.

In this manner we are able to obtain various DARA utilities, which reflect the more common
behaviour of the individual than IARA (Increasing Absolute Risk Aversion) utilities.

3.2. Risk-sensitive bequest games: examples

In this subsection we consider a stochastic version of the bequest game. Similar examples in
the additive setting (r = 0) were studied, for instance, in Amir [3], Balbus et al. [7]. We assume
that there is a single good used both for a consumption and as productive capital. The quantity of
the good is described by a number from the interval S := [0,1]. Generation t (t = 1,2, . . .) lives
for one period (period t ) and inherits an amount of good st ∈ S from generation t −1. Generation
t consumes 0 � at � st and saves the remaining part st − at . The next generation inheritance is
st+1, where st+1 is drawn from S according to the distribution

q(·|st , at ) = (
1 − (st − at )

)
δ0(·) + (st − at )ν(·).

Here δ0(·) is the Dirac measure concentrated at point 0 and ν(·) is some probability measure
on S. Furthermore, the partial utility of the current generation is u(a) = a, whereas the succes-
sor’s partial utility is v(a) = 4a. We assume that the current generation aggregates the two above
mentioned partial utilities by means of the function Ur . Since we consider a very special case
of our general model from next sections, we shall give only standard and necessary definitions.
Let F be the set of all measurable functions f : S 	→ S such that f (s) ∈ [0, s] for each s ∈ S.
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Elements of F are called (consumption) strategies for generations. If the current generation con-
sumes a ∈ [0, s] and the follower is assumed to use a strategy f ∈ F , then the expected payoff
for the current generation is

E
(
s, a, f,Ur

) :=
1∫

0

Ur
(
u(a) + v

(
f

(
s′)))q(

ds′∣∣s, a)
.

A pure Stationary Markov Perfect Equilibrium (SMPE for short) in the bequest game is a
function f ∗ ∈ F such that

f ∗(s) ∈ arg max
a∈[0,s]

E
(
s, a, f ∗,Ur

)
for all s ∈ S. Below in our calculations, we shall uniquely specify a number sr ∈ S for each r � 0.
With this number we shall associate a strategy fr defined as follows

fr(s) =
{

s, for s � sr
0, for s > sr .

(2)

We now give two examples and calculate SMPE for r = 0 and r < 0.

Example 1. Let ν(·) be a uniform distribution on S and s ∈ S be a capital of the current genera-
tion.

(I) If r = 0 and the follower employs a strategy f , then the current generation faces the
following problem

max
a∈[0,s]

E
(
s, a, f,U0) = max

a∈[0,s]
(
a + (s − a)j0

)
, where j0 =

1∫
0

4f (y)dy. (3)

Note that f ∗ = f is a SMPE if and only if j0 = 1. Thus, there are infinitely many SMPE. For
example, f ∗(s) = s/2 for all s ∈ S. Assume now that the successor uses a strategy f0 defined
in (2) for some s0 ∈ S. Then, equation j0 = ∫ s0

0 4ydy = 1 implies that 2s2
0 = 1. Hence, s0 =√

2/2 ≈ 0.707107. Thus, among infinitely many SMPE we can distinguish one f ∗ = f0 of the
form (2).

(II) Assume now that r < 0 and the successor employs some strategy f . The current genera-
tion faces the following problem

max
a∈[0,s]

E
(
s, a, f,Ur

) = max
a∈[0,s]

(−era
[
1 + (s − a)(jr − 1)

])
,

where jr = ∫ 1
0 e4rf (y) dy. Clearly, the above display is equivalent to

min
a∈[0,s] e

ra
[
1 + (s − a)(jr − 1)

]
.

It is not difficult to observe that the function a 	→ era[1 + (s − a)(jr − 1)] (defined for a ∈ [0, s])
has the minimum either at a = 0 or at a = s regardless of the form of f (more precisely, the
value of jr ∈ [0,1]). Hence, ers < 1 + s(jr − 1) or ers � 1 + s(jr − 1) for s ∈ S. Let us now
consider f = fr defined in (2). Clearly, from the above discussion, it follows that f ∗ = fr is a
SMPE if sr is a solution of the following equation

ersr = 1 + sr (jr − 1). (4)
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Note that jr = e4rsr

4r
− 1

4r
− sr and Eq. (4) is equivalent to the following

ersr

sr
− 1

sr
− e4rsr

4r
+ 1

4r
+ sr = 0. (5)

It is easy to see that this equation has a unique solution in S. For instance, the solutions are
s−0.001 ≈ 0.707315, s−1 ≈ 0.902023, and s−2 ≈ 0.993497. It can be also concluded that f ∗ = fr

is a unique left continuous SMPE in this game.
Observe that the function a 	→ E(− exp [r(u(a) + v(f (s′)))]) is neither convex nor concave.

Moreover, if f = f ∗ = fr , then arg maxa∈[0,sr ] E(sr , a, fr ,U
r) = {0, sr}. These facts indicate

that an analysis of SMPE for the case r < 0 is more complicated than in the additive case, in
which the functions involved can be concave, see for example, Balbus et al. [7,8].

Example 2. Let now ν(·) have the density function p(y) = 2y, y ∈ S.
(I) Assume that r = 0. Clearly, if f is used by the next generation, then the current generation

faces the problem as in (3) but with j0 = ∫ 1
0 8yf (y)dy. We note that any function f ∗ = f

for which j0 = 1 is again a SMPE. We now consider f0 in (2) Then, f ∗ = f0 is a SMPE, if∫ s0
0 8y2 dy = 1. Hence, s0 = 3

√
3/8 ≈ 0.721125.

(II) Let r < 0. Similarly as in Example 1, we can observe that in this case there is a unique left
continuous SMPE and it is of the form (2) with suitably chosen sr . Assuming that the following
generation is going to use fr we can show that the current generation can reply optimally by
playing the same strategy provided that sr solves Eq. (4), where

jr =
1∫

0

e4rfr (y)2y dy = e4rsr sr

2r
− e4rsr

8r2
+ 1

8r2
+ 1 − s2

r .

Summing up, Eq. (4) takes on the form

ersr

sr
− 1

sr
− e4rsr sr

2r
+ e4rsr

8r2
− 1

8r2
+ s2

r = 0. (6)

The examples of solutions are s−0.01 ≈ 0.722859, s−1 ≈ 0.879446, and s−4 ≈ 0.996388.

Let us discuss the SMPE given by (2). If the current generation uses the exponential function
to aggregate partial utilities, then the changing point sr for consumption level (from the whole
stock to zero) is greater than in case of the linear aggregator U0. Note further that from the
definition of the transition law, it follows that the higher stock is, the greater probability of the
stock level for the follower is. Since the current generation derives its utility from the partial
utilities u and v, then it is willing to leave the whole stock for the next generation only if the
probability of the future level of stock is sufficiently large. We may also look at the expected
value and the variance of random variables: X1 having the uniform distribution on [0,1] and
X2 having the density function p from Example 2. Namely, EX1 = 1/2, Var X1 = 1/12 and
EX2 = 2/3, Var X2 = 1/18. Hence, it is not peculiar that sr in Example 1 is greater than in
Example 2. This fact means that the current generation does not care only about the expected
value of the future stock, but also about its volatility. Moreover, we observe in both examples
that if r is sufficiently small, i.e., r ≈ −2.154 in Example 1 and r ≈ −5.483 in Example 2 (the
Arrow–Pratt index −r is high), then the unique SMPE is to consume the whole capital. If, on
the other hand, r → 0−, then sr → s0. Indeed, it is enough to use the Taylor expansion of the
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function z 	→ ez around point 0. For example, making use of ez ≈ 1 + z + z2/2 for z = rsr and
z = 4rsr we obtain from (5) that

1 + r
sr

2
− 2s2

r ≈ 0 and sr → √
2/2 if r → 0−.

Similarly, applying ez ≈ 1 + z + z2/2 + z3/6 for z = rsr and z = 4rsr to (6) it follows that

16r

3
s4
r + 8

3
s3
r − r2

6
s2
r − r

2
sr − 1 ≈ 0 and sr → 3

√
3

8
if r → 0−.

Thus, the considered examples confirm the interesting fact that the stationary Markov perfect
equilibria of the form fr (unique for every r) converge to a SMPE of the form f0 as r → 0−.

3.3. Basic notions and relevant facts

Let R be the set of all real numbers, R+ := [0,∞). Let Y be a Borel space, i.e., a non-empty
Borel subset of a complete separable metric space endowed with its Borel σ -algebra B(Y ). For
any Borel space X, by P(X) we denote the space of all probability measures on X endowed
with the weak topology and the Borel σ -algebra, see Chapter 7 in Bertsekas and Shreve [15].
Let S and A be Borel spaces. A transition probability or a stochastic kernel from S to A is
a function ψ : B(A) × S 	→ [0,1] such that ψ(B|·) is a Borel measurable function on S for
every B ∈ B(A) and ψ(·|s) ∈ P(A) for each s ∈ S. It is well-known that every Borel measurable
mapping f : S 	→ P(A) induces a transition probability ψ from S to A. Namely, ψ(B|s) =
f (s)(B), B ∈ B(A), s ∈ S, see Proposition 7.26 in Bertsekas and Shreve [15]. We shall usually
write ψ(da|s) instead of f (s)(da). Clearly, any Borel measurable mapping f : S 	→ A is a
special transition probability ϕ from S to A such that for each s ∈ S, ϕ(·|s) is the Dirac measure
concentrated at the point f (s).

Let C be a Borel subset of S × A such that the set

A(s) := {
a ∈ A: (s, a) ∈ C

} 
= ∅
for each s ∈ S. In addition, assume that for every s ∈ S the set A(s) is compact. By Brown and
Purves [19], the set-valued mapping (correspondence) s 	→ A(s) admits a Borel selector, that is,
there exists a Borel measurable mapping f : S 	→ A such that f (s) ∈ A(s) for all s ∈ S. Let F be
the set of all such Borel selectors. By Ψ we denote the set of all transition probabilities ψ from
S to A such that ψ(A(s)|s) = 1 for each s ∈ S. Clearly, F ⊂ Ψ , so Ψ 
= ∅.

Subsequently, we shall use a version of a classical result on elimination of randomisation
in statistical decision theory, see Dvoretzky, Wald and Wolfowitz [27], Balder [11]. Related re-
sults were utilised in the theory of controlled stochastic processes by, for instance, Feinberg and
Piunovskiy [28,29].

Let μ1, . . . ,μl be probability measures on S. Consider a family w1, . . . ,wm of real-valued
Borel measurable functions on C. For a proof of the following lemma, consult Theorem 1 in
Feinberg and Piunovskiy [29] and Theorem 2.1 in Feinberg and Piunovskiy [28].

Lemma 1. Assume that the measures μ1, . . . ,μl are atomless and ŵ1, . . . , ŵm are non-negative
Borel measurable functions on S such that

∫
S
ŵj (s)μk(ds) < ∞ for all j = 1, . . . ,m, k =

1, . . . , l. Assume also that |wj(s, a)| � ŵj (s) for each j = 1, . . . ,m and (s, a) ∈ C. Suppose that
A∗(s) is a non-empty compact subset of A(s) for each s ∈ S and the set {(s, a): s ∈ S, a ∈ A∗(s)}
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is Borel. Then for each ψ ∈ Ψ such that ψ(A∗(s)|s) = 1 for all s ∈ S, there exists some f ∈ F

such that f (s) ∈ A∗(s) for each s ∈ S and∫
S

∫
A(s)

wj (s, a)ψ(da|s)μk(ds) =
∫
S

wj

(
s, f (s)

)
μk(ds)

for all j = 1, . . . ,m, k = 1, . . . , l.

4. The general model and main results

In this section, we study intergenerational games with a stochastic production function and a
Borel state space. Our model is a generalisation of numerous consumption-saving models and
stochastic production economies with capital and labour.

4.1. Finitely many descendants

We assume that time is discrete and is indexed by t ∈ T = {1,2, . . .}. We consider an in-
tergenerational stochastic game played by a countable family {it }t∈T of short-lived players
(generations). It is defined by the objects: S, A, C, {A(s)}s∈S , u,v1, . . . , vm, and q , where:

(A1) S is a Borel state space.
(A2) A is a Borel space of actions available to every player it . For any s ∈ S, A(s) is a non-empty

compact subset of A representing the set of all actions available to player it in state s ∈ S.
It is assumed that the set

C = {
(s, a): s ∈ S, a ∈ A(s)

}
is Borel in S × A.

(A3) u, v1, . . . , vm are Borel measurable real-valued functions defined on the set C.
(A4) q is a transition probability from C to S, called the law of motion among states. If st is a

state at the beginning of period t of the game and player it selects an action at ∈ A(st ),
then q(·|st , at ) is the probability distribution of the next state st+1 ∈ S.

The sets Ψ and F are defined as in Subsection 3.3. A randomised Markov strategy3 for player
(generation) it is a function ψt ∈ Ψ . Let {ψt }t∈T be a sequence of randomised Markov strategies
of all generations. For any t ∈ T , define

ψt := {ψτ : τ = t, t + 1, . . .}.
The game is played in the following way. Generation it lives in period t and inherits a state of the
economy st ∈ S from the preceding generation it−1 (that lived and consumed in period t − 1).
Next it chooses an action (consumes) at ∈ A(st ) and derives its partial utility by computing
u(st , at ). Moreover, it assumes that each descendant it+j (for j = 1, . . . ,m) is equipped with the
partial utility function vj and selects some action at+j ∈ A(st+j ), where the state st+j evolves
according to the transition law q . Then, the current generation considers the sum of m+ 1 partial

3 Allowing for randomised strategies we are able to prove an existence theorem for Markov perfect equilibria in a
pretty general setup. Pure equilibria are then obtained using a purification result of Dvoretzky, Wald and Wolfowitz [27].



A. Jaśkiewicz, A.S. Nowak / Journal of Economic Theory 151 (2014) 411–447 423
utilities u(st , at )+ v1(st+1, at+1)+ · · ·+ vm(st+m,at+m). Clearly, this sum is a random variable
defined on Ω := Ht

m, where

Ht
m := A(st ) × C × · · · × C (C is taken m times)

is the space all feasible histories of the process from the state st endowed with the product
σ -algebra. Assume now that all generations employ a randomised Markov strategy ψτ , τ � t ,
defined as above. According to the Ionescu-Tulcea Theorem (see Proposition V.1.1 in Neveu [60]
or Chapter 7 in Bertsekas and Shreve [15]) for each st ∈ S there exists a unique probability

measure P
ψt

st defined on Ω = Ht
m induced by ψt and the transition probability q . Denote by

E
ψt

st the expectation operator with respect to the probability measure P
ψt

st . Then, generation t

calculates the certainty equivalent of the sum of partial utilities aggregated by the function Ur

defined in (1), that is, it considers⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

r
lnEψt

st
e
(ru(st ,at )+r

∑m
j=1 vj (st+j ,at+j ))

, for r < 0

Eψt

st

(
ru(st , at ) +

m∑
j=1

vj (st+j , at+j )

)
, for r = 0.

(7)

Clearly, (7) is well-defined if the functions u,v1, . . . , vm are bounded. Subsequently, we shall
make some integrability assumptions that allow them to be unbounded. Within such a framework
the random variable X in Subsection 3.1 equals to u(st , at )+∑m

j=1 vj (st+j , at+j ). Observe that
(7) in case of r < 0 is equivalent to the study of

Wr
m

(
ψt

)
(st ) := Eψt

st
Ur

(
u(st , at ) +

m∑
j=1

vj (st+j , at+j )

)
. (8)

Hence, we are concerned with von Neumann and Morgenstern utility approach. By putting
Vj (s, a) := ervj (s,a) for (s, a) ∈ C, j = 1, . . . ,m, and using (1), we point out that for r < 0,
we have

Ur

(
u(st , at ) +

m∑
j=1

vj (st+j , at+j )

)
= −eru(st ,at )V1(st+1, at+1) · · ·Vm(st+m,at+m). (9)

Obviously, if r = 0, we obtain

W 0
m

(
ψt

)
(st ) := Eψt

st

(
u(st , at ) +

m∑
j=1

vj (st+j , at+j )

)
. (10)

From (9) and (10), it follows that along any trajectory each generation it (that lives one period)
derives its utility from the current state-action pair (st , at ) and the actions at+j that will pos-
sibly be taken in future states st+j (j = 1, . . . ,m) by the m following generations. In terms of
consumption and saving models, each generation derives its utility from its own choice and con-
sumption decisions of the m descendants. In the literature, it is often assumed that vj := αβju,
where β ∈ (0,1) is a long-term discount rate and α > 0 is an altruism factor towards future
generations, see Phelps and Pollak [68], Alj and Haurie [2], Nowak [64] and references cited
therein. We write Wr

m(ψ)(st ) for Wr
m(ψt )(st ) when all generations iτ , τ � t , use the same

strategy ψ ∈ Ψ . Below, with the aid of certain operators, we provide a more legible form for
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Wr
m(ψ)(st ). This form will also be utilised in our proofs. Let ψ ∈ Ψ and ν ∈ P(A(s)). Define

the transition probability functions induced by q , ψ and ν as follows

q(D|s,ψ) :=
∫

A(s)

q(D|s, a)ψ(da|s), q(D|s, ν) :=
∫

A(s)

q(D|s, a)ν(da), D ∈ B(S).

If f ∈ F and s ∈ S, then q(D|s, f ) := q(D|s, f (s)), D ∈ B(S). Furthermore, for any Borel
function w : C 	→ R, and ψ ∈ Ψ , we put

w(s,ψ) :=
∫

A(s)

w(s, a)ψ(da|s), s ∈ S.

Additionally, for any Borel function v : S 	→ R and ψ ∈ Ψ , we set

Q
(1)
ψ v(s) = Qψv(s) :=

∫
S

v
(
s′)q(

ds′∣∣s,ψ)
, Q

(t+1)
ψ v(s) := Q

(1)
ψ Q

(t)
ψ v(s), s ∈ S,

(11)

and for j = 1, . . . ,m, we define

(VjQ)ψv(s) :=
∫

A(s)

∫
S

v
(
s′)q(

ds′∣∣s, a)
Vj (s, a)ψ(da|s), s ∈ S, (12)

provided that these integrals exist. Making use of (12) for ψ ∈ Ψ , st+1 ∈ S and r 
= 0, we define

J r
m(ψ)(st+1) := (V1Q)ψ · · · (Vm−1Q)ψṼm(ψ)(st+1), (13)

where Ṽm(ψ)(y) = Vm(y,ψ), y ∈ S. In order to make this definition more readable for a poten-
tial reader, we provide an integral formula for (13) when m = 3:

J r
3 (ψ)(st+1)

=
∫

A(st+1)

∫
S

∫
A(st+2)

∫
S

∫
A(st+3)

V3(st+3, at+3)ψ(dat+3|st+3)q(dst+3|st+2, at+2)

× V2(st+2, at+2)ψ(dat+2|st+2)q(dst+2|st+1, at+1)V1(st+1, at+1)ψ(dat+1|st+1),

where Vj (st+j , at+j ) = ervj (st+j ,at+j ), j = 1,2,3. Using (11), for r = 0, any ψ ∈ Ψ and
st+1 ∈ S, we define

J r
m(ψ)(st+1) = J 0

m(ψ)(st+1) := v1(s,ψ) +
m∑

j=2

Q
(j−1)
ψ ṽj (ψ)(s) (14)

where ṽj (ψ)(y) := vj (y,ψ), j = 1, . . . ,m, y ∈ S.
Suppose that all generations iτ , τ � t , use the same Markov strategy ψ ∈ Ψ . Then {ψt } can

be identified with ψ . The expected utility function (8) to every generation it can be expressed
with the help of functions (13) and (14) as follows

Wr
m(ψ)(st ) =

⎧⎪⎪⎨⎪⎪⎩
− ∫

A(st )
eru(st ,at )

∫
S
J r(ψ)(st+1)q(dst+1|st , at )ψ(dat |st ),

for r < 0∫
A(st )

(u(st , at ) + ∫
S
J 0(ψ)(st+1)q(dst+1|st , at ))ψ(dat |st ),

(15)
for r = 0.
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We can now define the main equilibrium concept studied in this paper. For any generation it and
st = s ∈ S, consider the optimisation problem Γ (ψ, s) where ψ ∈ Ψ is a Markov randomised
strategy used by every generation iτ , τ � t + 1. The objective function for player it in this
optimisation problem depends on a ∈ A(s) and is of the form

pr
m(s,ψ)(a) :=

{
−eru(s,a)

∫
S
J r

m(ψ)(s′)q(ds′|s, a), for r < 0

u(s, a) + ∫
S
J 0

m(ψ)(s′)q(ds′|s, a), for r = 0.
(16)

For any s ∈ S, φ,ψ ∈ Ψ define

Rr
m(s,φ,ψ) :=

∫
A(s)

pr
m(s,ψ)(a)φ(da|s), s ∈ S. (17)

Clearly, Rr
m(s,φ,ψ) is the payoff to generation it , when it uses a randomised strategy φ in

state s ∈ S and every successor generation employs a Markov strategy ψ ∈ Ψ . We shall write
Rr

m(s, ν,ψ), if for given s ∈ S, φ(da|s) in (17) is replaced by ν(da) for any ν ∈ P(A(s)).

Definition 1. A strategy ψ∗ ∈ F (ψ∗ ∈ Ψ ) is a (randomised) stationary Markov perfect equilib-
rium (SMPE) in the intergenerational stochastic game, if for every s ∈ S,

Rr
m

(
s,ψ∗,ψ∗) = sup

φ∈Ψ

Rr
m

(
s,φ,ψ∗). (18)

We remind that C is assumed to be a Borel set and all the sets A(s) are non-empty and
compact. The following assumptions are fundamental for our main results.

(A5) It is assumed that q has the following form

q(B|s, a) =
l∑

k=1

gk(s, a)μk(B), B ∈ B(S),

where the functions gk : C 	→ [0,1] are Borel measurable, gk(s, ·) is continuous on A(s) for each
s ∈ S, k = 1, . . . , l, and

l∑
k=1

gk(s, a) = 1 for all (s, a) ∈ C.

Let

μ := 1

l

l∑
k=1

μk.

Clearly, q(·|s, a) � μ for each (s, a) ∈ C.

(A6) It is assumed that u(s, ·), and v1(s, ·), . . . , vm(s, ·) are continuous on A(s) for each s ∈ S.
(A7) If r = 0, it is imposed that∫

S

max
a∈A(s)

∣∣u(s, a)
∣∣μk(ds) < ∞,

∫
S

max
a∈A(s)

∣∣vj (s, a)
∣∣μk(ds) < ∞

for all j = 1, . . . ,m and k = 1, . . . , l.
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We have arrived at our main results. Their proofs are given in Appendix A.

Theorem 1. Under assumptions (A1)–(A7) the intergenerational stochastic game has a ran-
domised SMPE.

Theorem 2. Assume (A1)–(A7) and that μ1, . . . ,μl are atomless. Then, the intergenerational
stochastic game has a SMPE.

Remark 1. Assumption (A5) was used in the theory of standard Markov games in Nowak [61]
to prove the existence of a stationary Nash equilibrium. His proof rests upon the Lyapunov the-
orem on the range of a vector valued atomless measure. In this paper, we employ an advance
result (based also on Lyapunov’s theorem) due to Dvoretzky, Wald and Wolfowitz [27]. This fact
enforces certain limitations on the model. Namely, we deal with finitely many descendants and
the transition structure indicated in (A5). However, at the cost of these constraints, we are able
to make pretty weak regularity assumptions on the utility functions. In addition, our model is
concerned with a general state space. Therefore, the OLG model with capital and labour studied,
for instance, by Balbus et al. [7], or an environmental growth model with a pollution externality
examined in Balbus et al. [9] can be viewed as special cases in our study.

The following example shows that SMPE need not exist under assumptions of Theorem 1.

Example 3. Assume that r = 0. Let S = {1,2}, m = 1, A(1) = {1,2}, A(2) = {1} and u ≡ v1.
Assume further that state s = 2 is absorbing and u(2,1) = 0. In state s = 1, we have that
q(1|1,1) = 1 and u(1,1) = 1 or q(2|1,2) = 1 and u(1,2) = 3. Hence, there are two Markov
strategies f1(1|1) = 1 and f2(2|1) = 1. Let s = 1 and f1(·|2) = f2(·|2) = 1. If the descendant
plays f1, then the best reply for the current generation is to play f2 and obtain

u
(
1, f2(1)

) +
2∑

s′=1

v1
(
s′, f1

(
s′))q(

s′∣∣1, f2(1)
) = 3 + 0 = 3.

If, on the other hand, the successor generation employs f2, then the best reply for the current
generation is to use f2 and get

u
(
1, f1(1)

) +
2∑

s′=1

v1
(
s′, f2

(
s′))q(

s′∣∣1, f1(1)
) = 1 + 3 = 4.

Hence, there does not exist a SMPE. This fact indicates that assumption (A5) in Theorem 2 on
atomless measures is essential. Moreover, it is not difficult to check that ψ∗(1|1) = ψ∗(2|1) = 1

2
is a randomised SMPE. Indeed, assume that the descendant plays ψ∗ and assume that the current
generation plays the strategy ψ defined as follows ψ(1|1) = α = 1 − ψ(2|1), α ∈ [0,1]. Then,

u(1,ψ) +
2∑

s′=1

v1
(
s′,ψ∗)q(

s′∣∣1,ψ
) = 2α + α + 3(1 − α) = 3,

which implies the assertion.
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4.2. Infinitely many descendants

In this subsection, we consider an infinite number of descendants for each generation. More-
over, we impose the following assumptions on the model:

(A8) The function u is non-negative and u(s, ·) is continuous on A(s) for each s ∈ S.

(A9) ∫
S

max
a∈A(s)

∣∣u(s, a)
∣∣μk(ds) < ∞, k = 1, . . . , l.

Assuming that vj (s, a) = αβju(s, a) for j = 1,2, . . ., (s, a) ∈ C and u is non-negative, we are
actually concerned with the limits of the functions in Subsection 4.1 as m → ∞. This note
enables us to simplify the presentation. Then, the random variable X in Subsection 3.1 equals
to u(st , at ) + α

∑∞
τ=t+1 βτ−t u(sτ , aτ ), which is now defined on Ω := Ht∞ := A(st ) × C∞. We

endow Ht∞ with the product σ -algebra. Let ψτ be any randomised Markov strategy for each
generation iτ , τ � t , t ∈ T . Again the Ionescu-Tulcea Theorem guarantees the existence of a

unique probability measure P
ψt

st on Ht∞ induced by ψt and the transition law q . As discussed
earlier, one can deal with the certainty equivalent of X or consider the equivalent (from the
maximisation point of view) expected utility function given for it as

Wr∞
(
ψt

)
(st ) := Eψt

st
Ur

(
u(st , at ) + α

∞∑
τ=t+1

βτ−t u(sτ , aτ )

)
.

Since u is non-negative, the expectation above is well-defined. By the Lebesgue monotone con-
vergence theorem, we have

Wr∞
(
ψt

)
(st ) = lim

m→∞Wr
m

(
ψt

)
(st ),

where Wr
m(it ,ψ

t )(st ) is as in (8) with the functions vj introduced above. Assume now that each
generation iτ , τ � t + 1, uses a randomised Markov strategy ψ ∈ Ψ . Then, for generation it ,
st = s ∈ S, and φ ∈ Ψ we can put

pr∞(s,ψ)(a) := lim
m→∞pr

m(s,ψ)(a), Rr∞(s,φ,ψ) := lim
m→∞Rr

m(s,φ,ψ). (19)

The limits in (19) exist by the Lebesgue monotone convergence theorem, since u � 0. We also
have

Rr∞(s,φ,ψ) =
∫

A(s)

pr∞(s,ψ)(a)φ(da|s), s ∈ S. (20)

Obviously, Rr∞(s,φ,ψ) is the payoff to generation it when it uses φ and each successor gener-
ation employs a Markov strategy ψ ∈ Ψ . We write Rr∞(s, ν,ψ), if for given s ∈ S, φ(da|s) in
(20) is replaced by ν(da) for arbitrary ν ∈ P(A(s)).

Definition 2. A strategy ψ∗ ∈ F (ψ∗ ∈ Ψ ) is a (randomised) stationary Markov perfect equilib-
rium (SMPE) in the intergenerational stochastic game with countably many descendants, if for
every s ∈ S,

Rr∞
(
s,ψ∗,ψ∗) = sup Rr∞

(
s,φ,ψ∗).
φ∈Ψ
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We can now formulate two new results.

Theorem 3. Assume that (A1)–(A2), (A4)–(A5), (A8) hold. Moreover, assume (A9) when r = 0
and u is bounded when r < 0. Then, the intergenerational stochastic game with countably many
descendants has a randomised SMPE.

The proof is given in Appendix A.

Theorem 4. Assume that r = 0 and (A1)–(A2), (A4)–(A5), (A8)–(A9) hold. Moreover, assume
that μ1, . . . ,μl are atomless. Then, the intergenerational stochastic game with countably many
descendants has a SMPE.

The proof of Theorem 4 makes use of the theorem of Dvoretzky, Wald and Wolfowitz [27]
(stated in Lemma 1) that holds for finitely many functions and atomless measures. Despite the
fact that we deal now with countably many descendants, a functional equation (see (22)) that
holds for the case r = 0, allows us to apply Lemma 1. Unfortunately, this situation does not repeat
for the case with r < 0 and we are made to proceed differently. A counterpart of Theorem 4 for
r < 0 is obtained in Section 6 (Proposition 3), but under specific assumptions.

For any Borel function v : S 	→ R integrable with respect to q and ψ ∈ Ψ , define

Lψv(s) := u(s,ψ) + β

∫
S

v
(
s′)q(

ds′∣∣s,ψ)
, s ∈ S.

Let

Ĵ 0∞(ψ)(s) := u(s,ψ) +
∞∑

j=1

βjQ
(j)
ψ ũ(ψ)(s), (21)

where ũ(ψ)(y) := u(y,ψ), y ∈ S. Under assumption (A5), all the functions Q
(j)
ψ ũ(ψ) are uni-

formly bounded, thus (21) is well-defined. Moreover, we note that

Ĵ 0∞(ψ) = LψĴ 0∞(ψ). (22)

Proof of Theorem 4. By Theorem 3, there exists a randomised SMPE ψ∗ ∈ Ψ . Using (21) it
follows that

l∗(s) := max
ν∈P(A(s))

(
u(s, ν) + αβ

∫
S

Ĵ 0∞
(
ψ∗)(s′)q(

ds′∣∣s, ν))

= u
(
s,ψ∗) + αβ

∫
S

Ĵ 0∞
(
ψ∗)(s′)q(

ds′∣∣s,ψ∗)
for all s ∈ S. Put

A∗(s) = arg max
a∈A(s)

(
u(s, a) + αβ

∫
S

Ĵ 0∞(ψ∗)
(
s′)q(

ds′∣∣s, a))
.

Under our continuity and compactness assumptions A∗(s) is non-empty and compact. Moreover,
ψ∗(A∗(s)|s) = 1 for each s ∈ S. We have that
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l∗(s) = max
a∈A∗(s)

(
u(s, a) + αβ

∫
S

Ĵ 0∞(ψ∗)
(
s′)q(

ds′∣∣s, a))
, s ∈ S.

From Lemma 1, we infer that there exists a Borel measurable mapping f ∗ ∈ F from S into A

such that f ∗(s) ∈ A∗(s) for each s ∈ S, and∫
S

Lψ∗ Ĵ 0∞
(
ψ∗)(s′)μk

(
ds′) =

∫
S

Lf ∗ Ĵ 0∞
(
ψ∗)(s′)μk

(
ds′)

for all k = 1, . . . , l. Under assumption (A5), this implies that∫
S

Lψ∗ Ĵ 0∞
(
ψ∗)(s′)q(

ds′∣∣s, a) =
∫
S

Lf ∗ Ĵ 0∞
(
ψ∗)(s′)q(

ds′∣∣s, a)
(23)

for all (s, a) ∈ C. Hence,

βQf ∗Lψ∗ Ĵ 0∞
(
ψ∗) = βQf ∗Lf ∗ Ĵ 0∞

(
ψ∗),

and consequently,

Lf ∗Lψ∗ Ĵ 0∞
(
ψ∗) = Lf ∗Lf ∗ Ĵ 0∞

(
ψ∗).

This fact and (22) imply that

Lf ∗ Ĵ 0∞
(
ψ∗) = Lf ∗Lψ∗ Ĵ 0∞

(
ψ∗) = L

(m)
f ∗ Ĵ 0∞

(
ψ∗) (24)

for all m � 2. Here, L
(m)
f ∗ denotes the composition of Lf ∗ with itself m times. It is easy to check

that

L
(m)
f ∗ Ĵ 0∞

(
ψ∗)(s) = u

(
s, f ∗(s)

) +
m−1∑
j=1

βjQ
(j)
f ∗ ũ

(
f ∗) + βmQ

(m)
f ∗ Ĵ 0∞

(
ψ∗)(s), s ∈ S.

Under assumptions (A5) and (A9), the set of functions {Q(m)
f ∗ Ĵ 0∞(ψ∗)(·)} is uniformly bounded

with respect to m and s ∈ S. Taking the limit as m → ∞ in (24) and making use of (22), we infer
that

Lf ∗ Ĵ 0∞
(
ψ∗)(s) = Ĵ 0∞

(
f ∗)(s) = Lf ∗ Ĵ 0∞

(
f ∗)(s), s ∈ S.

Hence, it follows that

βQf ∗ Ĵ 0∞
(
ψ∗)(s) = βQf ∗ Ĵ 0∞

(
f ∗)(s), s ∈ S.

Multiplying both sides of this equality by α and adding u(s, f ∗), we get

u
(
s, f ∗) + αβQf ∗ Ĵ 0∞

(
ψ∗)(s) = u

(
s, f ∗) + αβQf ∗ Ĵ 0∞

(
f ∗)(s) (25)

Since f ∗(s) ∈ A∗(s) for each s ∈ S, it follows from (25) that

l∗(s) = u
(
s, f ∗) + αβQf ∗ Ĵ 0∞

(
f ∗)(s), s ∈ S.

Suppose that f ∗ is not a SMPE. Then, there exists some s ∈ S and as ∈ A(s) such that

l∗(s) = u
(
s, f ∗) + αβQf ∗ Ĵ 0∞

(
f ∗)(s) < u(s, as) + αβ

∫
Ĵ 0∞

(
f ∗)(s′)q(

ds′∣∣s, as

)
.

S
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But we know that Ĵ 0∞(f ∗) = Lf ∗ Ĵ 0∞(f ∗) = Lf ∗ Ĵ 0∞(ψ∗). Thus, using (23) we get

l∗(s) < u(s, as) + αβ

∫
S

Lf ∗ Ĵ 0∞
(
ψ∗)(s′)q(

ds′∣∣s, as

)
= u(s, as) + αβ

∫
S

Lψ∗ Ĵ 0∞
(
ψ∗)(s′)q(

ds′∣∣s, as

)
= u(s, as) + αβ

∫
S

Ĵ 0∞
(
ψ∗)(s′)q(

ds′∣∣s, as

)
� l∗(s).

This contradiction completes the proof. �
4.3. Hyperbolic players

The concept of quasi-hyperbolic discounting in dynamic choice models was also inspired
by the work of Phelps and Pollak [68]. This idea has been further developed by a number of
authors. For example, Harris and Laibson [40] studied a consumption and savings model under
uncertainty with “hyperbolic consumers”. Related results were proved by Balbus and Nowak [6]
and Nowak [64]. Moreover, quite recently Montiel Olea and Strzalecki [59] provided a natural
axiomatisation of quasi-hyperbolic discounting. It is worth emphasising that from mathematical
point of view, the equilibrium problem analysed for hyperbolic players is almost the same as in
the intergenerational game examined in Subsection 4.1. The only difference is the fact that we
need to take into account a countable set of descendants for each generation. Let us now explain
the terminology used in Harris and Laibson [40]. We envision an individual decision maker to be
a sequence of “selves” indexed by discrete time t ∈ T . The decision maker is then modelled as a
distinct player in the sense of non-cooperative game theory. As a result, we deal with a sequential
game with countably infinitely many players who each acts only once, but who all care not only
about their instantaneous utility in their own period but also about the instantaneous utilities in the
consecutive periods, discounted at a given discount rate. Theorem 3 can be obviously formulated
in terms of hyperbolic players. A close result is given in Balbus and Nowak [6], where it is
assumed that S is an interval of the real line, and transition probability and utility functions
satisfy some concavity conditions. Moreover, our proof of Theorem 4 is based upon Theorem 3
and Lemma 1, which allow for consideration of a general state space framework. Therefore, our
model includes (as possible applications) a number of examples that deal with a multidimensional
state space, e.g., the stochastic production economy with capital and labour exploited in Balbus
et al. [7]. As for the work of Harris and Laibson [40], they study a consumption and savings
problem with S = R+, and the transition structure described by a certain difference equation
with i.i.d. shocks having a distribution with bounded support. Moreover, they assume that the
instantaneous utility function u has a relative bounded risk aversion factor. When compared to
our condition, we do not put such a limitation. However, we assume that the transition probability
function are of certain form expressed in (A5).

5. Invariant distributions

A common issue studied in economic theory and dynamic games concerns the existence of
an invariant (or stationary) distribution for the Markov chain induced by the transition function
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and an equilibrium strategy, see Futia [32], Stokey et al. [71], Kamihigashi and Stachurski [49],
Balbus et al. [7] and references cited therein.

Let BM(S) be the space of all bounded Borel measurable real-valued functions on the Borel
space S. By BC(S) we denote the space of all continuous functions in BM(S). Let Q be a
transition probability from S to S. Then Q induces the transition operator on BM(S) into itself
(denoted for convenience by the same symbol) defined by

Qv(s) :=
∫
S

v
(
s′)Q(

ds′∣∣s), s ∈ S, v ∈ BM(S).

The transition operator Q is (strong) Feller, if the mapping s 	→ Qv(s) is continuous for each
(v ∈ BM(S)) v ∈ BC(S). A probability measure ν on S is invariant for Q if

ν(B) =
∫
S

Q(B|s)ν(ds) for all B ∈ B(S).

Let Qt(·|s) denote the t -step transition probability induced by Q. Assume that S is a complete
separable metric space and Q is Feller. If, in addition, there exists some state s ∈ S such that
the family of probability measures {Qt(·|s)}t∈T is tight, then there exists at least one invariant
measure for Q, see the Krylov–Bogolioubov theorem, e.g., Chapter 3 in Da Prato and Zabczyk
[23].4 If we deal with a strong Feller operator Q, then to obtain a unique invariant probability
measure for Q, it is sufficient to know that there exists some state s0 ∈ S such that for any open
neighbourhood B0 of s0, there is some t ∈ T such that Qt(B0|s) > 0 for all s ∈ S. Such a state s0
is called accessible for Q. This result follows from Corollary 2.7 given by Hairer [37]. His proof
proceeds along similar lines as the proof of Proposition 4.1.1 in Da Prato and Zabczyk [23].

Let us consider the transition operator Q∗ induced by q and a Markov perfect Nash equi-
librium f ∗ ∈ F , that is, Q∗(·|s) := q(·|s, f ∗(s)), s ∈ S. Assume (A5) and that the finite family
of measures μ1, . . . ,μl is tight, i.e., for any ε > 0, there exists a compact set K ⊂ S such that
μk(K) � 1 − ε for all k = 1, . . . , l (see Billingsley [17]). If all the functions s 	→ gk(s, f

∗(s))
are continuous, then Q∗ is strong Feller. From assumption (A5), it immediately follows that

Q∗(K|s) � 1 − ε for all s ∈ S.

This inequality implies that Q∗ is tight and thus Q∗ has an invariant probability measure ν∗. In
order to guarantee the uniqueness of ν∗, it is sufficient to assume that there exists some state
s0 ∈ S such that for any open neighbourhood B0 of s0, μk(B0) > 0 for all k = 1, . . . , l. This, in
turn, yields that s0 is accessible for Q∗. If, on the other hand, we know that for this equilibrium
f ∗, there exists some k0 such that gk0(s, f

∗(s)) > 0 for all s ∈ S and μk0(B0) > 0 for any
open neighbourhood B0 of s0, then s0 is accessible and we get again the uniqueness of ν∗. The
above remarks apply to the cases studied in Section 6 (or in Balbus et al. [7]), for which the
functions f ∗ and gk , k = 1, . . . , l, are continuous. However, Lemma 1 does not ensure the strong
Feller property for Q∗ because f ∗ may be discontinuous. Nevertheless, the process, governed
by Q∗, may still possess a unique invariant probability measure ν∗. Indeed, if assumption (A5)
is satisfied and there is j0 such that gj0(s, a) � ε for some ε > 0 and for all (s, a) ∈ C, then

Q∗(B|s) = q
(
B

∣∣s, f ∗(s)
)
� εμj0(B) for all B ∈ B(S), s ∈ S. (26)

4 We thank Martin Hairer and John Stachurski for drawing our attention to this result.
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This, in turn, implies the strong geometric ergodicity of the Markov process induced by Q∗.
More precisely, (26) guarantees that t -step transition probabilities (Q∗)t converge to the unique
invariant distribution at geometric rate as t → ∞, see Lemma 3.3 in Hernández-Lerma [44].

6. Special cases with transitions allowing for atoms

In this section, we study a certain class of intergenerational strategic bequests models with
one-dimensional state space and concave utility functions. Our assumptions imposed on the tran-
sition probability and utility functions resemble the ones accepted in Amir [3,4], Nowak [62,64],
Balbus et al. [7]. However, the novelty of our approach is based upon the fact that we deduce the
existence of a SMPE from Theorem 1. This is only possible thanks to specific concavity condi-
tions used in these models. In addition, it is also worthy to stress that the results on stationary
Markov perfect equilibria in the bequest games with aggregator function Ur , r < 0, are new.

Let S = [0, s̄] ⊂ R+ or S = R+. The set S is referred to as the set of renewable resources.
For each s ∈ S, A(s) := [0, s] is the set of resources available for consumption in state s ∈ S. It
is obvious that C = {(s, a): s ∈ S,a ∈ A(s)} is a complete lattice in R2 with component-wise
order. Let us assume that u be a utility function of one variable (consumption) a ∈ A(s), for
any s ∈ S. To be more precise, we should write that u(s, a) = w(a) for each (s, a) ∈ C and some
function w of one variable. But for convenience, we use the same symbol u. A similar convention
is applied to the functions v1, . . . , vm. A pure Markov strategy f ∈ F specifies a consumption
level f (s) ∈ A(s) for each s ∈ S.

We make the following additional assumptions on the primitive data.

(C1) The transition probability q is of the form

q(B|s, a) = g(s − a)μ1(B) + (
1 − g(s − a)

)
μ2(B), B ∈ B(S), (s, a) ∈ C, (27)

where g : S 	→ [0,1] is a continuous, increasing, concave function and μ1, μ2 are proba-
bility measures on S such that μ1 � μ2, i.e., μ1 (first order) stochastically dominates μ2.
We have μ = (μ1+μ2)

2 .
(C2) The functions u, v1, . . . , vm are non-negative, continuous and increasing on R+.
(C3) The function u is strictly concave.
(C4) For k = 1,2 and j = 1, . . . ,m, the integrals

∫
S
vj (y)μk(dy) are finite.

Remark 2. Recall that μ1 � μ2 if and only if for an increasing function v, we get that∫
S
v(s)μ1(ds) >

∫
S
v(s)μ2(ds).

Remark 3. Similar assumptions to (C1) have also been used in the analysis of n-person Markov
game models that possess a wide range of applications to economics; see Amir [4], Curtat [22],
Horst [46] and Nowak [63] for general accounts.

We can now state our result for r = 0.

Proposition 1. Under assumptions (C1)–(C4) there exists a SMPE f ∗ ∈ F . Moreover, f ∗ is
non-decreasing and Lipschitz continuous with constant one.
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Proof. By Theorem 1 there exists a SMPE ψ∗ ∈ Ψ . Consider the function

p0
m

(
s,ψ∗)(a) := u(a) +

∫
S

J 0
m

(
ψ∗)(s′)q(

ds′∣∣s, a)
, a ∈ A(s) = [0, s].

Under condition (C1), we have

p0
m

(
s,ψ∗)(a) = u(a) +

∫
S

J 0
m

(
ψ∗)(s′)μ2

(
ds′) + D

(
ψ∗)g(s − a), (28)

where

D
(
ψ∗) =

∫
S

J 0
m

(
ψ∗)(s′)μ1

(
ds′) −

∫
S

J 0
m

(
ψ∗)(s′)μ2

(
ds′).

We show that D(ψ∗) > 0. Indeed, on the contrary, assume that D(ψ∗) � 0. By (28), the function
p0

m(s,ψ∗)(·) is increasing on A(s) for any s > 0. Therefore, we have

arg max
a∈A(s)

p0
m

(
s,ψ∗)(a) = s for each s ∈ S.

Since ψ∗ is an equilibrium, we must have ψ∗(s) = s for all s ∈ S. Moreover, D(ψ∗) = D(f0)

where f0(s) := s for s ∈ S and

D(f0) =
∫
S

J 0(f0)
(
s′)μ1

(
ds′) −

∫
S

J 0(f0)
(
s′)μ2

(
ds′).

Observe that, since v1 is increasing and f0(s
′) = s′ for all s′ ∈ S, we have

J 0
m(f0)

(
s′) = v1

(
s′) + C0,

where

C0 =
m∑

k=2

∫
S

vk(y)μ0(dy) and μ0 = g(0)μ1 + (
1 − g(0)

)
μ2.

Hence, it follows that J 0
m(f0) is increasing on S. Since μ1 � μ2, we have D(ψ∗) = D(f0) > 0,

which leads to a contradiction. Therefore, we must have D(ψ∗) > 0 and the function
p0

m(s,ψ∗)(·) defined in (28) is strictly concave on A(s) for each s > 0. Thus, f ∗(s) :=
arg maxa∈A(s) p

0
m(s,ψ∗)(a) is uniquely determined for any s ∈ S. (Observe that f ∗(0) = 0.)

Hence, it follows that ψ∗(s) = f ∗(s) for all s ∈ S, so f ∗ is a SMPE. Furthermore, note that

(s, a) 	→ u(a) +
∫
S

J 0
m

(
f ∗)(s′)μ2

(
ds′) + D

(
f ∗)g(s − a)

with D(f ∗) = D(ψ∗) > 0 is supermodular on the lattice C (see Lemma 0.2 in Amir [3]). There-
fore, by the well-known theorem of Topkis [73], we infer that f ∗ is non-decreasing and Lipschitz
with constant one. �

We now apply Theorem 1 to a model with r < 0. In this case, we make an additional assump-
tion on the function g.
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(C5) The function g in (27) is of the form

g(s − a) := 1 − e−b(s−a), (s, a) ∈ C,

with some b > 0.

Proposition 2. Under assumptions (C1)–(C5) there exists a SMPE f ∗ ∈ F . Moreover, f ∗ is
continuous.

Proof. By Theorem 1, there exists a randomised SMPE ψ∗ ∈ Ψ . Consider the function

pr
m

(
s,ψ∗)(a) = −eru(a)

∫
S

J r
m

(
ψ∗)(s′)q(

ds′∣∣s, a)
, a ∈ A(s) = [0, s],

where J r
m(ψ∗) is defined in (13). We have

pr
m

(
s,ψ∗)(a) = −eru(a)

(∫
S

J r
m

(
ψ∗)(s′)μ2

(
ds′) + Dr

(
ψ∗)g(s − a)

)
with

Dr
(
ψ∗) =

∫
S

J r
m

(
ψ∗)(s′)μ1

(
ds′) −

∫
S

J r
m

(
ψ∗)(s′)μ2

(
ds′).

Suppose that Dr(ψ∗) � 0. Then the function

η(a) :=
∫
S

J r
m

(
ψ∗)(s′)μ2

(
ds′) + Dr

(
ψ∗)g(s − a)

is non-increasing. Moreover, we know that η(a) > 0 for all a ∈ A(s). Thus, a 	→ eru(a)η(a) is
decreasing in a ∈ A(s) and attains its minimum at the point a := s ∈ A(s). Hence, it follows that

arg max
a∈A(s)

pr
m

(
s,ψ∗)(a) = s for each s ∈ S

and, since ψ∗ is a SMPE, we must have ψ∗(s) = f0(s) = s for all s ∈ S. But, then

J r
m

(
ψ∗)(s′) = J r

m(f0)
(
s′) = erv1(s

′)Cr , with Cr =
m∏

k=2

∫
S

ervk(y)μ1(dy) > 0.

Hence J r
m(ψ∗)(·) = J r

m(f0)(·) is decreasing on S. Since μ1 � μ2, we get that Dr(ψ∗) < 0,
which leads to a contradiction with our assumption. Thus, we must have Dr(ψ∗) < 0. Moreover,
observe that

pr
m

(
s,ψ∗)(a) = −eru(a)

(∫
S

J r
m

(
ψ∗)(s′)μ1

(
ds′) − Dr

(
ψ∗)eb(a−s)

)

= −eru(a)

∫
S

J r
m

(
ψ∗)(s′)μ1

(
ds′) + Dr

(
ψ∗)eru(a)+b(a−s). (29)

Since Dr(ψ∗) < 0, the function pr
m(s,ψ∗)(·) is strictly concave on A(s) for each s ∈ S. There-

fore, f ∗(s) := arg maxa∈A(s) p
r
m(s,ψ∗)(a) is uniquely determined for any s ∈ S. Hence, it fol-

lows that ψ∗(s) = f ∗(s) for all s ∈ S, so f ∗ is a SMPE. Clearly, f ∗ is continuous. �
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Remark 4. If we only assume (C1), then the function eru(a)(1 − g(s − a)) (that is multiplied by
Dr(ψ∗) in (29)) may not be concave. In this case, the best reply function f ∗ considered in the
proof of Proposition 2 may not be unique and we cannot claim that ψ∗ = f ∗.

Remark 5. In Proposition 2 our condition (C5) guarantees that the function a 	→ pr(s,ψ∗)(a)

is strictly concave, and therefore there is only one point at which the maximum is attained.
However, it is well-known that quasi-concavity is a considerable generalisation of concavity, see
Chapter 3.4 in Boyd and Vandenbergh [18]. Let h : R 	→ R be a continuous function with a
convex domain. Recall that a function h is quasi-concave, if the set {x ∈ R: h(x) � d} is convex
for any constant d or h is quasi-concave if and only if at least one of the following conditions
holds:

(a) h is non-decreasing,
(b) h is non-increasing,
(c) there is a point x0 in the domain of h such that for x < x0 (and x is in the domain of h), h is

non-decreasing and for x > x0 (and x is in the domain of h) is non-increasing.

The point x0 can be chosen as any point, which is a global maximiser of h. In other words,
the quasi-concave function h is unimodal. Condition (c) for a twice differentiable h reduces to
the simple requirement h′(x) = 0 �⇒ h′′(x) � 0. Obviously, if we additionally expect to have a
unique maximiser of h, then h must be either increasing or decreasing or there must be a unique
point x∗ such that

h′(x∗) = 0 �⇒ h′′(x∗) < 0. (30)

Let us now turn to our objective function

pr
m

(
s,ψ∗)(a) = −eru(a)

(
G2 + (G1 − G2)g(s − a)

)
,

where ψ∗ is a SMPE, r < 0, and

Gi =
∫
S

J r
m

(
ψ∗)(s′)μi

(
ds′), i = 1,2.

Note that from the proof of Proposition 2, we have that G1 < G2. Assume further that
pr

m(s,ψ∗)(·) is twice differentiable on S. Condition (30) can be read as follows: for fixed
s ∈ S \ {0}

dpr
m(s,ψ∗)(a)

da

∣∣∣∣
a=a∗

= −eru(a∗)((G1 − G2)
(
ru′(a∗)g(

s − a∗) − g′(s − a∗)) + ru′(a∗)G2
) = 0

�⇒ u′′(a∗)
u′(a∗)

g′(s − a∗) − ru′(a∗)g′(s − a∗) + g′′(s − a∗) < 0. (31)

Observe that the left-hand side in the last display is not always negative and therefore, this con-
dition is essential. Summing up, we come to the following conclusion. If the a 	→ pr

m(s,ψ∗)(a)

defined on A(s) is either increasing or decreasing or (31) holds, then there exists a SMPE f ∗ ∈ F ,
and moreover, f ∗ is continuous.
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Example 4. Assume that S = [0,1], u(a) = √
a/4, g(y) = y for y = s − a, and r = −1. More-

over, let μ1, μ2 and v1, . . . , vm be chosen in such a way that G1 = 1
2 and G2 = 3

4 . Then, our
objective function equals

pr
m

(
s,ψ∗)(a) = −e−√

a/4
(

3

4
− 1

4
(s − a)

)
, a ∈ [0, s],

and its first derivative is

dpr
m(s,ψ∗)(a)

da
= 1

32
√

a
e
√

a/4(a − 8
√

a + 3 − s), a ∈ [0, s].

Note that a 	→ (a − 8
√

a + 3 − s) is increasing for s ∈ [0, 9
64 ], hence the maximum is at the

point s. If, on the other hand, s ∈ ( 9
64 ,1], then a 	→ (a − 8

√
a + 3 − s) attains the maximum at

a certain point a∗ ∈ (0, s). Clearly, condition (31) is satisfied for a∗, since for each s ∈ (9/64,1]
we have that

u′′(a∗)
u′(a∗)

g′(s − a∗) − ru′(a∗)g′(s − a∗) + g′′(s − a∗) = − 1

2a∗ + 1

8
√

a∗ < 0.

Therefore, the best reply function for ψ∗ is uniquely determined and equals

f ∗(s) =
{

s, for s ∈ [0, 9
64 ]

29 + s − 8
√

13 + s, for s ∈ ( 9
64 ,1].

Hence, f ∗ = ψ∗ is a SMPE. It is worth pointing out that although the function s 	→ f ∗(s)
is decreasing on ( 9

64 ,1], the function Rr(s, f ∗, f ∗) is increasing on [0,1]. Moreover, if s ∈
[0.9309,1] the function pr(s,ψ∗)(·) is not concave on A(s), it has inflection point in A(s).

We close this section with a result on intergenerational games involving countably many de-
scendants.

Proposition 3. Assume that u is bounded, continuous, increasing and non-negative on R+. Sup-
pose that (C1) and (C3)–(C5) hold and r < 0. Then, the intergenerational stochastic game
involving countably many descendants has a SMPE.

Proof. By Theorem 3, the game has a randomised SMPE ψ∗ ∈ Ψ . The remaining part of the
proof is the same as that of Proposition 2 with J r

m(ψ∗) replaced by J r∞(ψ∗). �
7. Concluding remarks

This paper is concerned with a pretty general model of intergenerational stochastic game with
a Borel state space and atomless additive transition probabilities. The obtained results may have
applications to analysing various specific bequest games or OLG models with multidimensional
state spaces.5 The key idea in our approach to get the existence of SMPE is to utilise the pu-
rification theorem due to Dvoretzky, Wald and Wolfowitz [27]. We emphasise that this theorem

5 The need of examination of multidimensional case was already postulated by Bernheim and Ray [14]. To the best of
our knowledge Balbus et al. [7,9] are the only papers that study related models to ours and deal with a two-dimensional
state space.
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has not been applied (in general) to stochastic games. The advantage of using this tool is the
fact that it enables us to impose relatively weak conditions on the primitive data both in games
with finitely many descendants and also in certain games with infinitely many descendants and
a recursive structure. The latter point means that our approach also works in some consumption-
savings models with hyperbolic players. Up to now, intergenerational stochastic games have been
studied with a linear aggregator function, which corresponds to the case r = 0. Our novel idea,
in this paper, is to introduce a new way of aggregating partial utilities, namely with the aid of
the exponential function with some negative coefficient r reflecting an additional attitude to risk.
This approach is equivalent to looking at the certainty equivalent of the sum of random partial
utilities received along trajectories of the game process. This certainty equivalent is known in
finance as the entropic risk measure. For its applications in various areas of research the reader is
referred to Subsection 3.1 and references cited therein. Although this manner of aggregation was
already used in dynamic games, there is no contribution of such an approach to intergenerational
stochastic games (or more generally OLG models). Our toy examples in Subsection 3.2 aim at
explaining the difference between the two cases r = 0 and r < 0 and providing the meaning of
being a risk averse generation in a bequest stochastic game.

Our paper does not answer all inspiring questions that stem from proposed approach. Some of
them are left open. First, we do not examine the uniqueness issue for SMPE. This problem was
partially resolved for the linear aggregation function (i.e., for r = 0 according to our terminology)
by Balbus et al. [7,8]. The methods used in the aforementioned papers strongly exploit some
geometrical properties of monotone mappings and are based on Theorem 3.2.5 in Guo et al. [36].
However, in order to apply the result from Guo et al. [36] the authors have to assume that the state
space is an interval in the real line and one of the measures involved in the transition probability is
the Dirac measure concentrated at zero. These conditions entail some concavity properties of the
functions used in the model. In our case, when r < 0, the use of Theorem 3.2.5 in Guo et al. [36]
is not helpful. As Example 1 in Subsection 3.2 illustrates, the functions involved in our analysis
are neither convex nor concave and the argmax correspondence may have non-convex values.
Uniqueness is a significant issue, but it must be studied in different way that suggested so far in
the literature. Nonetheless, at the moment we are not aware of any techniques that can be useful in
solving this problem. The second crucial question is a computation of SMPE. For the case r = 0,
this problem was settled in Balbus et al. [7–9] for straightforward games by means of globally
stable iterative procedures. However, these algorithms are available thanks to the particular form
of transition law that assumes that one of the measures is the Dirac measure concentrated at
zero. As our examples show, the case r < 0 leads to some complicated nonlinear equations,
whereas a solution for the case r = 0 is pretty easy to find. SMPE obtained in Examples 1 and
2 exhibit “extreme behaviour”, i.e., to consume everything or nothing. This is due to the fact
that the functions u and v are linear. More stimulating equilibria should be “interior”. However,
calculating an “interior” SMPE is a challenging problem, even if u and v are power functions.
In this setup, the approach based on monotone value function operator methods does not lead
to a solution. Hence again, there is a need of development of new techniques. We hope that this
paper will inspire researchers to the study of computational issues for SMPE in risk sensitive
models.
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Appendix A

Let L1(μ) := L1(S,μ) (L∞(μ) := L∞(S,μ)) denote the Banach space of all μ-integrable
(μ-essentially bounded) real-valued measurable functions on S. Endow L1(μ) with the weak
topology σ(L1(μ),L∞(μ)). The weak convergence of a sequence {hn} to some h ∈ L1(μ) is
denoted by: hn

ω→ h in L1(μ) and it basically says that
∫
B

hn(x)μ(dx) → ∫
B

h(x)μ(dx) as
n → ∞, for every B ∈ B(S). The proof of existence of an equilibrium in the sense of Definition 1
rests upon a fixed point argument. We endow the strategy space with a compact topology. Let Ψ μ

denote the quotient space of all equivalence classes of functions ψ ∈ Ψ which are equal μ-a.e.
where μ = (μ1 + · · · + μl)/ l. Since the set A(s) is compact, Ψ μ is compact and metrisable
when endowed with the weak-star topology. For the details we refer the reader to Balder [10] or
Chapter IV in Warga [74]. Here, we only mention that a sequence {ψn} converges to ψ in Ψ μ if
and only if for every w : C → R such that w(s, ·) is continuous on A(s) for each s ∈ S, w(·, a)

is measurable for each a ∈ A(s), and s 	→ maxa∈A(s) |w(s, a)| is μ-integrable over S (i.e., w is a
Carathéodory function), we have∫

S

∫
A(s)

w(s, a)ψn(da|s)μ(ds) →
∫
S

∫
A(s)

w(s, a)ψ(da|s)μ(ds) as n → ∞.

Replacing w by w1B above, where 1B is the indicator function of any set B ∈ B(S), we can write
that ∫

B

w(x,ψn)μ(dx) →
∫
B

w(x,ψ)μ(dx) as n → ∞.

In other words, the sequence {w(·,ψn)} weakly converges to w(·,ψ) in L1(μ). Let w̃ be a
Carathéodory function. Then under assumption (A5), we have

sup
ψ∈Ψ

sup
(s,a)∈C

∣∣∣∣∫
S

w̃
(
s′,ψ

)
q
(
ds′∣∣s, a)∣∣∣∣� max

1�k�l

∫
S

max
a∈A(s′)

∣∣w̃(
s′, a

)∣∣μk

(
ds′) < ∞. (32)

We now define a special class Γ of pairs ({hn}, h) where h ∈ L1(μ) and {hn} is a sequence in
L1(μ). Namely, ({hn}, h) ∈ Γ if hn

ω→ h in L1(μ) and, for any k = 1, . . . , l,
∫
S
hn(x)μk(dx) →∫

S
h(x)μk(dx) as n → ∞.

Lemma 2. Assume that (A5) holds and ({hn}, h) ∈ Γ . Let w be a Carathéodory function. Define

h′
n(s) :=

∫
A(s)

∫
S

hn

(
s′)q(

ds′∣∣s, a)
w(s, a)ψn(da|s)

and

h′(s) :=
∫

A(s)

∫
S

h
(
s′)q(

ds′∣∣s, a)
w(s, a)ψ(da|s), s ∈ S.

Then ({h′
n}, h′) ∈ Γ .

Proof. Note that

h′
n(s) − h′(s) =

∫ ∫ (
hn

(
s′) − h

(
s′))q(

ds′∣∣s, a)
w(s, a)ψn(da|s) + Zn(s), (33)
A(s) S
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where

Zn(s) :=
( ∫
A(s)

∫
S

h
(
s′)q(

ds′∣∣s, a)
w(s, a)ψn(da|s)

−
∫

A(s)

∫
S

h
(
s′)q(

ds′∣∣s, a)
w(s, a)ψ(da|s)

)
.

We notice that if h ∈ L1(μ), then by assumption (A5), it follows that the function defined as
(s, a) 	→ ∫

S
h(y)q(dy|s, a)w(s, a) is Carathéodory. Thus, Zn tends to zero weakly in L1(μ) by

the definition of ψn → ψ in the space Ψ μ. Denote by ρk a density of μk with respect to μ.
Clearly, (s, a) 	→ ∫

S
h(y)q(dy|s, a)w(s, a)ρk(s) is also a Carathéodory function. Thus, the con-

vergence ψn → ψ in Ψ μ implies that∫
S

∫
A(s)

∫
S

h
(
s′)q(

ds′∣∣s, a)
w(s, a)ψn(da|s)μk(ds)

=
∫
S

∫
A(s)

∫
S

h
(
s′)q(

ds′∣∣s, a)
w(s, a)ρk(s)ψn(da|s)μ(ds)

→
∫
S

∫
A(s)

∫
S

h
(
s′)q(

ds′∣∣s, a)
w(s, a)ρk(s)ψ(da|s)μ(ds)

=
∫
S

∫
A(s)

∫
S

h
(
s′)q(

ds′∣∣s, a)
w(s, a)ψ(da|s)μk(ds) (34)

as n → ∞, k = 1, . . . , l.
Let us now observe that since

∫
S
hn(s

′)μk(ds′) → ∫
S
h(s′)μk(ds′) as n → ∞, for any k =

1, . . . , l, it follows that there exists some η > 0 such that

max
1�k�l

∣∣∣∣∫
S

(
hn

(
s′) − h

(
s′))μk

(
ds′)∣∣∣∣� η.

For the first term in (33), we have that∣∣∣∣ ∫
A(s)

∫
S

(
hn

(
s′) − h

(
s′))q(

ds′∣∣s, a)
w(s, a)ψn(da|s)

∣∣∣∣
� max

a∈A(s)

∣∣w(s, a)
∣∣ max

1�k�l

∣∣∣∣∫
S

(
hn

(
s′) − h

(
s′))μk

(
ds′)∣∣∣∣� η max

a∈A(s)

∣∣w(s, a)
∣∣. (35)

From (35), it follows that

Yn(s) :=
∫

A(s)

∫
S

(
hn

(
s′) − h

(
s′))q(

ds′∣∣s, a)
w(s, a)ψn(da|s) → 0

as n → ∞. For each k = 1, . . . , l, we have |Yn(s)ρk(s)| � η maxa∈A(s) |w(s, a)|ρk(s) for all
n � 1. Since

∫
S

maxa∈A(s) |w(s, a)|μk(ds) < ∞, then by the Lebesgue dominated convergence
theorem, we conclude that
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∫
B

Yn

(
s′)μ(

ds′) → 0 and
∫
S

Yn

(
s′)μk

(
ds′) =

∫
S

Yn

(
s′)ρk

(
s′)μ(

ds′) → 0 (36)

as n → ∞ for any B ∈ B(S). From (34), the fact that Zn
ω→ 0 in L1(μ) and (36), it follows that

({h′
n}, h′) ∈ Γ .

Lemma 3. Assume that (A1)–(A7) are satisfied. If ψn → ψ in Ψ μ, then ({J r
m(ψn)}, J r

m(ψ)) ∈ Γ .

Proof. Let us first consider r < 0. Assume that ψn → ψ in Ψ μ as n → ∞. Put Ṽm(ψn)(y) :=
Vm(y,ψn) and Ṽm(ψ)(y) := Vm(y,ψ), y ∈ S. From our assumptions (A5)–(A7), it follows that
({Ṽm(ψn)}, Ṽm(ψ)) ∈ Γ . Further, observe that by (32) with w̃ = Vm, Lemma 2 with w = Vm−1,
we deduce that({

(Vm−1Q)ψnṼm(ψn)
}
, (Vm−1Q)ψṼm(ψ)

) ∈ Γ.

Continuing this procedure and applying (32) and Lemma 2 (m − 1) times, we infer that({
(V1Q)ψn · · · (Vm−1Q)ψnṼm(ψn)

}
, (V1Q)ψ · · · (Vm−1Q)ψṼm(ψ)

) ∈ Γ.

This fact and (13) imply that({
J r

m(ψn)
}
, J r

m(ψ)
) ∈ Γ.

Let us now assume that r = 0. Put ṽj (ψn)(y) := vj (y,ψn) and ṽj (ψ)(y) := vj (y,ψ), y ∈ S.
Then, we have ({̃vj (ψn)}, ṽj (ψ)) ∈ Γ for j = 1, . . . ,m. From (32) with w̃ = vj , Lemma 2 with
w ≡ 1, it follows that for j = 2, . . . ,m, we have ({Qψnṽj (ψn)},Qψṽj (ψ)) ∈ Γ . Applying (32)
and Lemma 2 again for j > 2 ((j − 2) times) with w ≡ 1, we finally get({

Q
(j−1)
ψn

ṽj (ψn)
}
,Q

(j−1)
ψ ṽj (ψ)

) ∈ Γ.

Thus, ({
ṽj (ψn) +

m∑
j=2

Q
(j−1)
ψn

ṽj (ψn)

}
, ṽj (ψ) +

m∑
j=2

Q
(j−1)
ψ ṽj (ψ)

)
∈ Γ.

This fact and (14) yield that ({J 0
m(ψn)}, J 0

m(ψ)) ∈ Γ .

Lemma 4. Assume (A1)–(A7) and that ψn → ψ in Ψ μ. Then

sup
φ∈Ψ

Rr
m(s,φ,ψn) → sup

φ∈Ψ

Rr
m(s,φ,ψ)

as n → ∞.

Proof. Let r < 0 and observe that∣∣∣sup
φ∈Ψ

Rr
m(s,φ,ψn) − sup

φ∈Ψ

Rr
m(s,φ,ψ)

∣∣∣
� max

a∈A(s)

[
eru(s,a) sup

(s,a)∈C

∣∣∣∣ ∫ (
J r

m(ψn)
(
s′) − J r

m(ψ)
(
s′))q(

ds′∣∣s, a)∣∣∣∣].
S
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For r = 0, we have that∣∣∣sup
φ∈Ψ

R0
m(s,φ,ψn) − sup

φ∈Ψ

R0
m(s,φ,ψ)

∣∣∣
� sup

(s,a)∈C

∣∣∣∣ ∫
S

(
J 0

m(ψn)
(
s′) − J 0

m(ψ)
(
s′))q(

ds′∣∣s, a)∣∣∣∣.
Now, the result easily follows from assumptions (A2), (A6), (A5) and Lemma 3.

Proof of Theorem 1. Let ψ ∈ Ψ μ. Under our assumptions the set C̃ := {(s, ν): s ∈ S,

ν ∈ P(A(s))} is Borel and P(A(s)) is compact. Define the set

F(ψ)(s) :=
{
η ∈ P

(
A(s)

)
: Rr

m(s, η,ψ) = sup
ν∈P(A(s))

Rr
m(s, ν,ψ)

}
for each s ∈ S. From Nowak and Raghavan [65] (see p. 523), the set-valued mapping s 	→
F(ψ)(s) admits a Borel measurable selector. Let G(ψ) ⊂ Ψ μ denote the set of all μ-equivalence
classes of Borel measurable selectors of s 	→ F(ψ)(s). We shall prove that ψ 	→ G(ψ) is upper
semicontinuous. Let ψn → ψ ∈ Ψ μ. Assume that φn ∈ G(ψn) for each n and φn → φ in Ψ μ as
n → ∞. We have that

Rr
m(s,φn,ψn) = max

ϕ∈Ψ
Rr

m(s,ϕ,ψn) = max
ν∈P(A(s))

Rr
m(s, ν,ψn), μ-a.e.

Using Lemmas 2 and 3, it easily follows that Rr
m(·, φn,ψn)

ω→ Rr
m(·, φ,ψ) in L1(μ). On the

other hand, by Lemma 4,

max
ϕ∈Ψ

Rr
m(s,ϕ,ψn) → max

ϕ∈Ψ
Rr

m(s,ϕ,ψ)

for every s ∈ S. Thus, we have

Rr
m(s,φ,ψ) = max

ϕ∈Ψ
Rr

m(s,ϕ,ψ), μ-a.e.

In other words, φ ∈ G(ψ) which completes the proof of the upper semicontinuity of G. By
Glicksberg fixed point theorem [34], there exists some φ∗ ∈ Ψ μ such that φ∗ ∈ G(φ∗). Hence,
there is a measurable set S1 ⊂ S such that μ(S1) = 1 and

Rr
m

(
s,φ∗, φ∗) = max

ν∈P(A(s))
Rr

m

(
s, ν,φ∗), s ∈ S1. (37)

By Corollary 1 in Brown and Purves [19] there exists a Borel measurable selector ϕ∗ from S \S1
into A such that ϕ∗(s) ∈ A(s) and

Rr
m

(
s, ϕ∗, φ∗) = max

ν∈P(A(s))
Rr

m

(
s, ν,φ∗) (38)

for each s ∈ S \ S1. Define ψ∗(s) = φ∗(s) for s ∈ S1 and ψ∗(s) = ϕ∗(s) for s ∈ S \ S1. Since
q(·|s, a) � μ for all (s, a) ∈ C, we have

Rr
m

(
s,ψ∗, φ∗) = Rr

m

(
s,ψ∗,ψ∗)

for all s ∈ S. This fact, (37) and (38) imply that ψ∗ is a SMPE.



442 A. Jaśkiewicz, A.S. Nowak / Journal of Economic Theory 151 (2014) 411–447
Proof of Theorem 2. Let ψ∗ ∈ Ψ be a SMPE and assume first that r < 0. Recall that
Ṽm(ψ∗)(y) = Vm(y,ψ∗) for y ∈ S. By making use of (12), we define the functions:

wm(s, a) := Vm(s, a)

wm−1(s, a) := Vm−1(s, a)

∫
S

wm

(
s′,ψ∗)q(

ds′∣∣s, a)
= Vm−1(s, a)

∫
S

Ṽm

(
ψ∗)(s′)q(

ds′∣∣s, a)
,

wm−2(s, a) := Vm−2(s, a)

∫
S

wm−1
(
s′,ψ∗)q(

ds′∣∣s, a)
= Vm−2(s, a)

∫
S

(Vm−1Q)ψ∗ Ṽm

(
ψ∗)(s′)q(

ds′∣∣s, a)
,

...

w1(s, a) := V1(s, a)

∫
S

w2
(
s′,ψ∗)q(

ds′∣∣s, a)
= V1(s, a)

∫
S

(V2Q)ψ∗ · · · (Vm−1Q)ψ∗ Ṽm

(
ψ∗)(s′)q(

ds′∣∣s, a)
.

Obviously, by (13), it follows that w1(s,ψ
∗) = J r

m(ψ∗)(s), s ∈ S. Next we put

A∗(s) = arg max
a∈A(s)

pr
m

(
s,ψ∗)(a),

where pr
m(s,ψ∗)(·) is defined in (16). By Corollary 1 in Brown and Purves [19], it is easily seen

that A∗(s) 
= ∅. Moreover, ψ∗(A∗(s)|s) = 1 for each s ∈ S. From Lemma 1, we infer that there
exists a measurable mapping f ∗ ∈ F from S into A such that f ∗(s) ∈ A∗(s) for each s ∈ S, and∫

S

∫
A(s′)

wj

(
s′, a′)ψ∗(da′∣∣s′)μk

(
ds′) =

∫
S

∫
A∗(s)

wj

(
s′, a′)ψ∗(da′∣∣s′)μk

(
ds′)

=
∫
S

wj

(
s′, f ∗(s′))μk

(
ds′),

for j = 1, . . . ,m and k = 1, . . . , l. This fact and assumption (A5) imply that∫
S

∫
A(s′)

wj

(
s′, a′)ψ∗(da′∣∣s′)q(

ds′∣∣, s, a) =
∫
S

wj

(
s′, f ∗(s′))q(

ds′∣∣, s, a)
(39)

for all (s, a) ∈ C and j = 1, . . . ,m. Now we claim that f ∗ ∈ F is a SMPE. Indeed, applying (39)
to function wm,wm−1, . . .w1 in turn, we finally arrive at the following equality∫

S

w1
(
s′,ψ∗)q(

ds′∣∣s, a) =
∫
S

(V1Q)f ∗(V2Q)f ∗ · · · (Vm−1Q)f ∗ Ṽm

(
f ∗)(s′)q(

ds′∣∣s, a)
,

(s, a) ∈ C.
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Therefore,

pr
m

(
s,ψ∗)(a) = −eru(s,a)

∫
S

w1
(
s′,ψ∗)q(

ds′∣∣s, a)
= −eru(s,a)

∫
S

(V1Q)f ∗(V2Q)f ∗ · · · (Vm−1Q)f ∗ Ṽm

(
f ∗)(s′)q(

ds′∣∣s, a)
for all (s, a) ∈ C. Thus, by Definition 1, the definition of A∗(s) and the fact that f ∗(s) ∈ A∗(s)
for each s ∈ S, we deduce that

max
a∈A(s)

pr
m

(
s,ψ∗)(a)

= max
a∈A(s)

(
−eru(s,a)

∫
S

(V1Q)f ∗(V2Q)f ∗ · · · (Vm−1Q)f ∗ Ṽm

(
f ∗)(s′)q(

ds′∣∣s, a))

= −eru(s,f ∗(s))
∫
S

(V1Q)f ∗(V2Q)f ∗ · · · (Vm−1Q)f ∗ Ṽm

(
f ∗)(s′)q(

ds′∣∣s, f ∗(s)
)

for all s ∈ S. The last equality completes the proof for r < 0.
Assume now that r = 0 and define functions w1, . . . ,wm as follows

wm(s, a) := vm(s, a), wm−1(s, a) := vm−1(s, a) +
∫
S

wm

(
s′,ψ∗)q(

ds′∣∣s, a)
,

wm−2(s, a) := vm−2(s, a) +
∫
S

wm−1
(
s′,ψ∗)q(

ds′∣∣s, a)
= vm−2(s, a) +

∫
S

vm−1
(
s′,ψ∗)q(

ds′∣∣s, a)
+

∫
S

[
Qψ∗ ṽm

(
ψ∗)](s′)q(

ds′∣∣s, a)
,

...

w1(s, a) := v1(s, a) +
∫
S

w2
(
s′,ψ∗)q(

ds′∣∣s, a)
= v1(s, a) +

∫
S

v2
(
s′,ψ∗)q(

ds′∣∣s, a) +
∫
S

[
Qψ∗ ṽ3

(
ψ∗)](s′)q(

ds′∣∣s, a) + · · ·

+
∫
S

[
Q

(m−2)
ψ∗ ṽm

(
ψ∗)](s′)q(

ds′∣∣s, a)
.

Note that by (14), we have that w1(s,ψ
∗) = J 0

m(ψ∗)(s), s ∈ S. The proof proceeds along similar
lines as for the risk averse generations. Therefore, analogously, we set

A∗(s) = arg max p0
m

(
s,ψ∗)(a)
a∈A(s)
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with p0
m(s,ψ∗)(·) defined in (16). Clearly, A∗(s) 
= ∅ and ψ∗(A∗(s)|s) = 1, for each s ∈ S.

Applying (39) to function wm,wm−1, . . .w1 in turn, we finally arrive at the following equality∫
S

w1
(
s′,ψ∗)q(

ds′∣∣s, a) =
∫
S

(
v1

(
s′, f ∗(s′)) +

m∑
j=2

[
Q

(j−1)
f ∗ ṽj

(
f ∗)](s′))q

(
ds′∣∣s, a)

,

(s, a) ∈ C.

Hence,

p0
m

(
s,ψ∗)(a) = u(s, a) +

∫
S

w1
(
s′,ψ∗)q(

ds′∣∣s, a)

= u(s, a) +
∫
S

(
v1

(
s′, f ∗(s′)) +

m∑
j=2

[
Q

(j−1)
f ∗ ṽj

(
f ∗)](s′))q

(
ds′∣∣s, a)

for all (s, a) ∈ C. Furthermore, Definition 1, the definition of A∗(s) and the fact that f ∗(s) ∈
A∗(s) for each s ∈ S yield the following

max
a∈A(s)

p0
m

(
s,ψ∗)(a)

= max
a∈A(s)

(
u(s, a) +

∫
S

(
v1

(
s′, f ∗(s′)) +

m∑
j=2

[
Q

(j−1)
f ∗ ṽj

(
f ∗)](s′))q

(
ds′∣∣s, a))

= u
(
s, f ∗(s)

) +
m∑

j=1

[
Q

(j)
f ∗ ṽj

(
f ∗)](s)

for all s ∈ S. The last display completes the proof for r = 0.

Proof of Theorem 3. Let vj = βju, j ∈ T and let us now consider r = 0. We have that
J 0∞(ψ)(s) = limm→∞ J 0

m(ψ)(s), for all ψ ∈ Ψ and s ∈ S. Note that by (21), J 0∞(ψ) = βĴ 0∞(ψ).
If u satisfies (A9), from (32), it follows that the sequence {J 0

m(ψ)(s)} converges to J 0∞(ψ)(s) uni-
formly in ψ ∈ Ψ and s ∈ S as m → ∞. This fact and Lemma 3 imply that ({J 0∞(ψn)}, J 0∞(ψ)) ∈
Γ . The proof now proceeds as that of Theorem 1 with J 0

m(ψ) replaced by J 0∞(ψ).
For r < 0 we also have the uniform convergence of J r

m(ψ)(s) to J r∞(ψ)(s) over ψ ∈ Ψ

and s ∈ S, which quite easily follows from our boundedness assumption on u. Therefore, the
arguments used in the proof of Theorem 1 can also be applied to J r∞(ψ) instead of J r∞(ψ). �
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A. Jaśkiewicz, A.S. Nowak / Journal of Economic Theory 151 (2014) 411–447 447
[72] T.D. Tallarini Jr., Risk-sensitive real business cycles, J. Monet. Econ. 45 (2000) 507–532.
[73] D. Topkis, Minimizing a submodular function on a lattice, Operations Res. 26 (1978) 305–321.
[74] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.
[75] P. Whittle, Risk-Sensitive Optimal Control, Wiley, New York, 1990.

http://refhub.elsevier.com/S0022-0531(14)00018-0/bib74616Cs1
http://refhub.elsevier.com/S0022-0531(14)00018-0/bib74s1
http://refhub.elsevier.com/S0022-0531(14)00018-0/bib77s1
http://refhub.elsevier.com/S0022-0531(14)00018-0/bib7768s1

	Stationary Markov perfect equilibria in risk sensitive stochastic overlapping generations models
	1 Introduction
	2 A comparison of literature on equilibria for standard Markov games
	3 Preliminaries
	3.1 Risk-sensitive optimisation
	3.2 Risk-sensitive bequest games: examples
	3.3 Basic notions and relevant facts

	4 The general model and main results
	4.1 Finitely many descendants
	4.2 Inﬁnitely many descendants
	4.3 Hyperbolic players

	5 Invariant distributions
	6 Special cases with transitions allowing for atoms
	7 Concluding remarks
	Acknowledgments
	References


